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SUMMARY

The paper presents the stability study of rotor/bearing systems. Even though it was

limited to study of a fully lubricated bearing subject to oil whirl, and further

limited to low eccentricity region for linearity and with only one type of lubricant,

it can be seen that the perturbation methodology, together with the sorting of the

impedance terms into direct and quadrature with respect to input force can be very

useful to the general study of stability. Further, the concept of active feedback

should assist to increase knowledge in rotor system stability. While there remains

a large amount of study to be accomplished, perhaps some more tools are available

to assist this field of analysis.

INTRODUCTION

The problem of rotor vibration in plain fluid bearing becomes more and more

serious as operating speeds of turbomachinery continually increase. Two of the

most significant sources of vibrations are fluid lubricated bearings and seals.

Despite the high interest of field engineers and researchers which has followed

the widespread application of oil/gas bearings and seals, the problems created by

their hydrodynamic actions in turbomachines are still not solved completely
[I-18].

This paper shows that the dynamic behavior of a rotor and its stability can be model-

ed as an active feedback mechanism, which should greatly help in clarifying the

stability problems of rotor system. It further shows testing and data techniques

for bearings and seals, and the evaluation of the performance of a perturbation

test bearing.

The principal observed dynamic phenomena due to the lubricant action during shaft ro-

tation are known as oil whirl and oil whip. Oil whirl appears at rotational speeds

lower than twice the first bending critical speed of the rotor (corresponding to its

first natural frequency), as a forward circular motion of the journal with the

frequency nearly equal to half the speed of rotation. This motion is related to a

loss of stability of a pure rotational motion (about a central position of the

journal in the bearing, or more generally - an equilibrium position, determined by

the static load) and creation of a stable steady circular motion with an amplitude

affected by nonlinear factors of the oil film. In the performance of real machines,

oil whirl may cause serious machine damage since the level of the steady-state
whirling amplitude may exceed admitted tolerances of vibration.

Oil whip also has the character of forward motion, but unlike oil whirl, is locked

to the frequency of the first self balance resonance (critical speed) of the rotor.

The rotational speed must be of at least twice the resonance speed for oil whip

instability to occur. Sometimes the rotor goes unstable in oil whirl, then converts
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to oil whip when higher rotative speeds are reached. Oil whirl is not known to
occur at higher speeds than oil whip.

In earlier years it was believed that for all of the forward circular instabilities

that the range of rotative speeds from 2 to 2.5 times the self-balance resonance

speed was required. However, more recent works [1] show that such instabilities

may occur at any rotative speed ratio with respect to balance resonances, depending

on the type of instability. Some machines in the field with severe gas whip problems

show that this instability cannot be cured with the machine rotational speed below
the first self balance resonance.

The literature on oil whirl/whip phenomena is quite rich [1-18]. The results con-

cerning the loss of stability of the pure rotational rotor motion are usually pre-

sented in the form of stability charts describing the behavior of the rotor in the

vicinity of the steady equilibrium position for different variable parameters. The

stability rules indicated by different authors rarely agree in detail. This is not

surprising - rotor response is very sensitive to slight variations in parameters

(e.g., a change of temperature by a few degrees, or minor geometric asymmetry in the

bearing may stabilize the rotor), and it has not been recognized that the active
feedback is involved.

Classical analysis of the rotor/bearing systems usually starts from the very gen-

eral Euler-Navier-Stokes equations. The solution of these equations, which may

supply information concerning magnitude and functional relationship of hydrodynamic

forces is unfortunately not easy to obtain. Analytical solutions require a lot of

simplfying assumptions (such as idealized boundary conditions, neglecting thermal

effects, ideal characteristics of lubricant, assumed pattern of the pressure distri-

bution, neglecting curvature and capillarity effects of the lubricant, laminar flow,

etc.). The resulting solution represents, then, only a rough approximation, as some

of the neglected factors may happen to be dominant.

Numerical solutions of the Euler-Navier-Stokes equations, requiring, just as much,

a number of simplifying assumptions, involve a lot of time-consuming computations

[6] and can solve only some particular problems. Progress in computer facilities

and numerical techniques, however, improves the possibility of achieving solutions,

which allow for rotor/bearing coupling of motion and further parametric analysis.

Parallel to the progress in computer sciences, a remarkable progress in experimental

techniques and measurement facilities has been observed. The experimental results

bring better understanding of dominating phenomena occurring during rotor/bearing

motion. This, in turn, will clarify eventually the simplifying assumptions intro-

duced in theoretical analyses.

In the present paper an experimental method of identifying the hydrodynamic forces

in a plain cylindrical bearing during the oil whirl condition will be dicussed.

The results are applicable to rotor/bearing or rotor/seal systems. The approach,

based on analysis of forced response of the perturbed system, presents a continuation

of previous research [7,8,9,12,13]. The mathematical model of the system considered
is based on the linear theory of the rotor motion and fluid flow effects, as this

series of tests have been deliberately run at low eccentricity numbers (generally

less than 0.5).

The agreement of the experimental results and the predicted motion is very good.

The method of investigation is shown to be very effective and sensitive to any

parametric variation, so that it can be highly recommended in many applications.
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TEST ROTOR SYSTEM AND THE PHYSICAL MODEL

8

6
\

Figure I.

shaft, 3

speed controller, 5 Additional springs, 6

Main shaft tachometer, 7 - Thermometer, 8 -

4

Rotor test rig. I - Bearing, 2 - Main

Perturbing shaft, 4 - Perturbing

The experimental rig to
perform the perturbation test
consists of two shafts with

circular cross sections (Figs.
1,2). The main shaft rotates

at the constant speed wR
(being quite well below-the
first critical speed) in a
rolling, pivoting bearing
and in a plain cylindrical oil
bearing with diameter D=2"
axial length L=1.5" and
radial clearance C=0.015".

The second shaft rotating at

perturbing speed Wp in a pi-
voting bearing and a rolling
antifriction bearing, is
attached to the journal of
the main shaft at the oil
bearing. The trans-
parent bearing, fed by blue
dyed oil type ISO-VG-32 from
an outboard tank with a

constant pressure p=7100
N/m permits direct obser-
vation of the distribution
of the lubricant within the
bearing .

Both shafts are driven by
separate electric motors
(0.75 HP for the main rotor,
0.1 HP for the perturbing
one) through a flexible rub-
ber coupling. For compen-

Proximitors, 9 - Perturbed Reservoir. sating weight of two shafts,
a pulling vertical force is introduced in such a manner that during rotation of the
main shaft, its response is a pure rotating motion in the center of the bearing. For
this purpose, the main shaft is also straightened and balanced. At the same section
of the shaft the additional symmetric springs can be introduced. The perturbing force
is created by a controlled unbalance at the second shaft (calibrated unbalance
masses attached to a single light disk mounted on the shaft). The unbalance inertia

force is then proportional to the square of the perturbing speed Wp .

The motion of the shaft journal is observed by two displacement motion, noncontacting
probes (vertically and horizontally located) plus a Keyphasor probe to provide ac-
curate phase and speed signals. Additionally the constant rotational speed of the
main shaft and slowly variable rotation speed of the perturbing shaft are recorded.
A special device designed to control constant angular acceleration of the perturbing
shaft was used. The Keyphasor, horizontal and vertical probe signals, filtered to
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the main (perturbing) frequency, were continuously observed on the oscilloscope mon-
itor (orbits and time variable displays) and stored in the computer. The computer
then provides numerical results and graphical representation of the amplitude/phase/
frequency relationships, or their derivatives ("Direct" and "Quadrature" Impedances,
see expressions (9) and (10)). The physical model of the system is presented in
Fig 2.

MATHEMATICALMODELOFTHESYSTEM

/ /Measuring Prot_ _t ]'_J ]" r , _1

_1 * _rnocoo PlvotlngBearing_, I

/ / '\ Rolling Bearing _ iP I /- Perturbing Shaft _|

r_g

Figure 2. - Physical model of system.

mation. It was assumed that the system has only two degrees of freedom (horizontal

(x) and vertical (y) deflections of the main shaft, as seen by the probes). The

shafts are supposed rigid. External damping is neglected. With these assumptions,

the equation of motion of the system is as follows:

M_ + (J1w R + J2wp)i_ + Kz + F = U w2 e iwpt + i P1 ' (1)
where: P

M = Ii/£42 + I21_i 2, J1 = Iiz/£42, (2)

J2 Ipz/£Z2, U = (24-£2)£5 m r/£i£4,
Pz (_4-£2)[P(£I-£3) - g (£zmz£7/£4 + m2£6)]/_i£4

The mathematical model is

based on the assumption of
"small" deflections, allow-

ing for linerization. The

angular motions of the

shafts are then approx-

imated by their linear
radial deflections. The

hydrodynamic forces are-
introduced in the oil

bearing are introduced

in their linear approxi-

and

z = x + iy, i = _F-_ (3)

combines in a complex variable the horizontal (x) and vertical (y) deflections

of the journal; Ii, 12, I_z, I are moments of inertia of the main (1) and
perturbing (2) shafts (abOut t_ x or y and z axis), £z .... ,£7, are cor-

responding lengths (Fig. 2); wn is main shaft rotational speed, Wp - perturbing

shaft rotation speed, K - stiffness coefficient of the additional springs; mp,
r-mass and radius of the controlled unbalance, P - vertical constant pulling
force, ml, m2 - masses of the main and perturbing rotors, g- gravity acceleration.

F represents the hydrodynamic force in the bearing:

F = (m + mti)_ + (dr-dti)_ + (kr-WRkti)z '

where m,mt,dr,dt,k r and kt are bearing coefficients.

The full symmetric linear two degree of freedom model of hydrodynamic forces is
taken into consideration.

(4)

SOLUTION OF THE MATHEMATICAL MODEL

We simplify the mathematical model (1)+(4) neglecting gyroscopic terms (J2=J2=O)

and the coupling "fluid inertia" term (mt=O).
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If the condition of stability is satisfied,

- If21<WRkt/d r <Ifll ,

where fl,f2 are natural frequencies of the free vibration (see Appendix for
details), then the dominating solution of (1) will be the forced response:

(5)

i(Wpt+y)
z=Ae +B, (6)

where amplitude A and phase angle y are

2

A = U m /(D 2 + Q2)½
p

y = arctan (- O/D),

(7)

(8)

with

andDirectImpedance: D = -(M + m) Wp 2 + dtw p + kr +K

Quadrature Impedance: Q= drW p - ktw R.

HORIZONTAL

VERTICAL

REVERSE _:

= 64.4c poise (T = 67 °F)

(_. = 200 radls

-75

-100

125

IRIGINAL SYSTEM (O)

SPRINGS

& MASS ISM)

2 3

PERTURBATION SPEED (.o,_

[rad/s 10OI

(SM)

FORWARD

-3 . 2

Figure 3.

(9)

(10)

Note that the phase angle y

corresponds to the attitude

angle of the bearing.

The static displacement in the
solution (6) is

(11)

B - P1kikkr+K}- Rkt)

(K+kr_2+k2t L,_"

It will serve for evaluation of

the stiffness coefficients by a

preload test with no perturbation

(w =0). During the perturbation
te_t (variable w ) the pre-
load was eliminated (PI=O).

TEST RESULTS. IDENTIFICATION

OF THE IMPEDANCES AS FUNCTIONS

OF ROTATIONAL SPEED. STABILITY

CHECK

The experimental tests produced a
set of results for the response

o _ 2 3 amplitude A and phase angle y
PERTURBATION SPEED m.

_,_d,s_ooj versus (slowly varying) per-

turbation speed. The para-
Phase frequency and amplitude/frequency meters of the set were rota-

responses of system, tional speed and temperature.

The tests were performed for
three cases: with additional

springs (System "S"), with additional springs and mass (System "SM") and without
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them (original system "0").

/r V(S) [rad/s 1001 _'

p I ] '
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Fig. 3 presents an example of the test results for

-2.5

PERTURBATION SPEED _J,,

[rad/s 1001

_1 = 644c poise IT _ 67 °F)

CO R = 200 rad,"s

-5.0

Figure 4. - Impedances versus perturbation speed

for three cases.

a rotational speed mR =200 rad/s.
For a perturbation speed slightly
less than half of the rotational

speed, a well pronounced resonance

was observed. This pattern repeated
for all values of the rotational

speed. In the resonance vicinity,

the phase angle sharply changes
values between zero and -90 °.

This behavior corresponds well to

the predicted model of the sys-

tem (see expressions (7), (8)).

The system without additional

springs and mass shows the highest

resonance amplitude. An addition

of springs lowers the amplitude

considerably.

For the reverse perturbation speed
resonance has not been observed

although the system attempts

to whirl forward. The ampli-

tudes of vibration slowly in-

crease with negative frequency,

the phase angle slightly changes

at the frequency corresponding

to minus half m R. Major differ-
ences in horizontal and vertical

phase angles are due to the 90°

difference in probe readings. We

observe however, some nonsymmetricity in the system, especially in the -1/2w R
frequency region.

The experimental data stored in the computer were transformed into the Direct
and Quadrature Impedances:

2
D = U 2 cosy /A , Q =-U w siny /A (12)

p P

An example of the computer generated relationship between Impedances and perturbation
speed for wD = 200 rad/s is given in Fig. 4. The graphs correspond to the results

presented iB Fig. 3. In all three cases the symmetry of the system for the forward

perturbation speed was maintained - the amplitudes and phases showed to be the same

for vertical and horizontal responses, the orbits were circular. At the reverse

perturbation speed, we observed differences in horizontal and vertical Impedances.

Figure 5 presents a set of results of the response of the original system "0" for

variable rotational speed. All other parameters of the system were kept constant

during this test. The Direct Impedances have a roughly parabolic shape, while the

Quadrature Impedances are nearly straight lines.
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Figure 5.

speed for variable rotational speed.

_3

D/0.77 = -(1.8"10 wR + O.25)Wp 2 - Wp

Impedances versus perturbation

The data taken from Fig. 5 served to
obtain the cross relation for the

Direct Impedance versus rotational

speed with the perturbation speed

as a parameter (Fig. 6). An analy-
tical approximation to the Direct

Impedance as straight line function
of the rotational speed has been

adapted:

D = ClWR-C 2•

The next step of identification was
an evaluation of the coefficients C4

and C2 as functions of the perturbation
speed w . For this purpose, the val-
ues of the Direct Impedance at zero

perturbation speed and the slopes

of the straight lines present in Fig.

6 were crossplotted as functions of

the perturbation speed.

For both of these curves the parabolic

approximation has been adapted [15]:

_3

Cz = - 1.8-10 w 2 _ 2.5 w -200 [kg/s]
P P

C2 = ÷ 0.25 w 2-950 w ~ 9.5"104 [N/m]
P P

Finally the Direct Impedance is describ-

ed by for the following analytical
form:

(2.5WR-950)-200 wR + 9.5,104 , (13)

where 0.77 was not yet taken into account the dimensional factor. Comparing this

expression with the expression (9) derived from the mathematical model of this

system and introducing M=O.4 kg, K=O, the identification of the parameters of
the rotor can be completed:

_3

m = m(w R) = (1.4"10 w R - 0.21) [kg]

dt= dt(WR) =-(1.9 wR - 730) [kg/s]
4

kr = kr(WR) = (7.3"10 - 150 wR) [N/m].

The Quadrature Impedances (Fig. 5) were identified as the straight lines; varying

with rotational speed.

(14)

where
Q = (970-0.69WR)(Wp-lU_R),

w plQ= 0

w R

(15)

(16)
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is the ratio of the pertur-

bation speed for which the

Quadrature Impedance has a
300

_oo .... zero value to the rotational
-- I00 zXu _ _ ROTATIONJ_L speed wR. The parameter

o _ _ _,tr,_,sjappeared to be nearly constant

for all performed tests:

300 _ = 0.48.

Its value agrees with the oil

v whirl ratio observed in prac-
tice. The value AmR corre-
sponds to the average oil

velocity.

¢

The comparison between the
4 expressions (10) and (15)

leads to the identification

Figure 6. - Direct impedance versus rotational speed of the system parameters:
and variable perturbation speed.

d r = dr(W R) = (970-0.69 wR) [kg/s]

and

kt = kt(w R) = (470 - 0.33 mR) [kg/s] = kdr(W R)

mt = O, as it has been already assumed.

(17)

As we notice, all parameters of the system are functions of the rotational speed wR.
It was not possible to obtain test results for very low values of the perturbation

speed. For this reason a "displacement" test was performed. The main shaft rotating

at constant speed was perturbed by a constant pulling force P. The probes measured
vertical and horizontal displacements. The force-response characteristics showed

to be linear in relatively wide range of displacements, however, their slopes varied
considerably with the rotational speed. The formula (11) served for the identi-

fication the parameters kr and kt (K=O in this test*):

kr = 4000 N/m (for 0 < wR _ 150 rad/s)

kt =( 490-0.27w R) [kg/s].

(18)

The evaluation of the coefficient kr was not very precise. However, its relatively

* The calculation of the coefficients k_ and kt was performed indirectly. First
the slopes of the straight lines corresponding to the pulling force PI versus
horizontal (x) and vertical (y) displacements were evaluated for different

values of the rotational speed.

The slopes are equal to "directional" stiffnesses K ±P./x, K =P./y, corresponding
to x and y. Taking (6) and (II) into account the s_if_ness _oe_ficients

2)
kr = K / (I+(K/K x) , kt_ R = krKy/K x

were then calculated for each value of the rotational speed.
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small value was noticed especially for higher mR . The agreement with the previously

evaluated coefficient kt (expression (17)) is very good.

Having evaluated the parameters of the system the stability check has been

possible.

Introducing the expressions (14) and (17) into the stability criterion (5) and

rearranging terms, we obtain the cubic polynomical inequality:

1.29 mR3 + 3030 WR2 - 6.17'105WR-2.29-108 < 0

The polynominal (19) has one positive root wp = 366 rad/s. The stability

criterion, then, has the form: wR < 366 ra_/s.
During the experiment it

20C

150

8

Z
9 loo
I.-

n. 50

o OR,GNALS S.M-- 
E3 - WITH SPRINGS& MASS\\

x - WITH SPRINGS _ _ _

PERT  CL'ONo P

O_ZIT Y MARGINS

I I I I I I ]

1 O0 200 300

ROTATIONAL SPEED _._,_1,I

(19)

was observed that for rot-

ational speeds higher than 350
rad/s the rotor became un-

stable, which is consistant

with the above analysis.

We notice that the value

of amplitude peaks is close-

ly related to the difference

between perturbation speeds at

which Direct Impedance and

Quadrature Impedance equal

to zero (Figs. 3 and 4).
This difference is referred to

as the stability safety margin

A (see Appendix). In Fig. 7

the values of perturbation

speed for zero impedances
Figure 7. - Perturbation speed at zero impedances and have been plotted. The mar-

stability margins, gin of stability decreases

with the rotational speed. For the considered systems ("0","S", and "SM") the

zeros of the Quadrature Impedance remain the same. The additional springs and

mass have influence on the Direct Impedance only.

At the reverse perturbation speed, the Quadrature Impedance is negative for

all speeds (compare (10) for m negative, see also Figs. 4 and 5). It does

not cross zero; the system is _ery stable.

Figure 8 presents the impedances for the squeeze film test (wg=0). We notice the
symmetric parabolic shape of the Direct Impedance and antisymMetric (straight line)

for the Quadrature Impedance. (Slight displacement of the lines from zero at

m =0 is due to very low input force level). As expected, tangential stiffness,

bBing related to the rotational speed, equals zero when WR=0.

In the squeeze film test the Quadrature Impedance contain then only the radial

damping term d (see (10)), which appears to be positive. The condition of
stability (5) _s satisfied for all rotational speeds. The displacement of the
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Figure 8. - Impedances versus rotational speed for
squeeze film.

Direct Impedance parabole from

the symmetric position for WR=O
into the region of positive

perturbation speeds for WR>O
indicates a relationship of the

tangential damping dt with rota-

tional speed, dt=O for mR=O

and dt>O for wQ>O within the
inves[igated r_nge of speed.

(See (14) for comparison).

The Fig. 9 presents the Direct

and Quadrature Impedances for

variable oil temperature. The

variations of the Quadrature

Impedance are quite significant

while the Direct Impedance

remains nearly invariable in

the wide temperature range, espe-

cially for lower values of the

perturbation speed. Let us

evaluate the Quadrature Impe-
dance as a function of tem-

perature. From the graphs Fig. 9

the relation between the slope

of the Quadrature Impedance

versus temperature and the

speed ratio _ can be obtained.

Finally the Quadrature Impedance
is evaluated as follows [15]:

Q/0.77 = (1700 - lOT) [Wp-A(T)WR] [N/m],
_3

_(T) = 0.48 (1.1 - 1.8.10 T),

where T is temperature in Farenheit degrees. Further we derive the relationship

between temperature and oil viscosity (measured by Cannon-Fenske Viscosimeter 200),

so that the Quadrature Impedance can be expressed in terms of the oil viscosity.

If the Direct Impedance is known for any temperature, then a correcting factor

can be introduced for the value of Direct Impedance corresponding to any different
temperature [15].

Summarizing the test results, we see that the predicted model well reflects the

main dynamic features of the system. The Direct and Quadrature Impedances can be

identified easily as a function of the system parameters and in particular, as a

function of the rotational speed.

ACTIVE SERVOMECHANISM CONCEPT

The ability of a lubricated bearing to support both steady-state and dynamic loads

by forming a springy cushion consisting of a fluid wedge is well known. It is also

well known that a 360 ° lubricated bearing has a propensity for instability known as

oil whirl/whip. In fact, even before the outstanding work of Newkirk and Taylor

[10] or Hull [11-13], Harrison [14] predicted in 1919 that the full lubricated

bearing would be unstable.
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The study of rotor instability has

generated a vocabulary including
such expressions as cross springs,

cross damper, (and even cross masses),

negative damping, etc. Such cross
actions exist as effects, unlike gyro-

scopic action which is a genuine cross

coupling physical law. The reason

why these cross coupling bearing and
seal effects occur is that such ele-

ments clearly have a behavior much

more complex than any possible passive

systems. These machine elements
contain active feedback, in which

exists a mechanism transferring rota-

tional energy into lateral vibration

energy. This is true for every identi-

fiable rotor instability of the forward

circular whirl and whip category,

including shaft internal friction,

aerodynamic cross coupling or steam

whip. In particular, the behavior
of a 360 ° lubricated bearing is

analyzed herein. The situation

in any gas or liquid seal is also

generally in the 360 degree category
so that the results can then be ex-

tended to any seal or bearing dynamic

.behavior. To show in simple descrip-

speed with variable viscosity (temperature) tion that such systems are actually
of the oil. closed loop servomechanisms, observe

the performance of the bearing in

response to a steady-state load.

Apply a downward pressure to a shaft rotating anticlockwise with no initial

dynamic or steady-state preload. The obvious and well known result is that the
shaft moves downward very slightly, and moves strongly to the right. This

motion, of course, provides the converging lubricant wedge to support the

applied downward load. Since lubricant has virtually no spring effect of its

own, the action generates the spring cushion synthetically. Applying a down-
ward steady-state load as a step function, the first effect is for the shaft

to move downward in response to passive direct (radial) damping (d=) . The
result of this downward action is to create a restriction of oil f_ow at the

bottom. This in turn creates a converging wedge on the left, which forces the

shaft to the right. This process continues (usually with some damped whirling),

until the shaft reaches an equilibrium position in which forces are balanced.

This position to the right is sufficient to create the constriction which
provides the wedge to support the shaft against the input force because the

input to the active element is motion and the output is force, as previously
described.

The dimensions of the active elements are that of impedance. It then seems

reasonable to present the rotor/bearing system as a servomechanism with a feedback

loop containing active elements of the system (Fig. I0). The general transfer
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function of the system (described by Eqs. (I) and (4)) is given in the Appendix. As
it has been shown in the previous section, the parameters related to the bearing
depend directly on rotational speed - they represent active elements. The term
"active" refers to the mechanismof transformation of rotational energy into vibra-
tion energy, which provides the major reaction to input forces.

The input to the system is represented by the exciting periodic force as well as
static load (¢(Wpi) - see Appendix).

Ll_(i(up)l _*fl&

EXTERNAL - _

FORCE

12

E_

PASSIVE ELEMENT

TRANSFER FUNCTION

1

K+k, - MOJ_ + co.(-idr + d, -- m(_p)

ACTIVE ELEMENT !TRANSFER FUNCTION

_,CO Re- ia

z{i(,Op)

MOTION

Figure lO. - Rotor-bearing active feedback diagram.

The output is the motion -
vertical and horizontal dis-

placements of the main shaft

(z(iWp)).

The output motion with respect
to the input force shows all of
the active and passive terms in
simple series (see (A8)). As

such, it could be optional

which ones are put in the
active category, with the

remaining ones left in the

passive category. However,

the static loading test pro-

vides a perturbation speed of
w =0 so that all terms con-

taining w as a multiplier are deleted. These terms deleted entirely are the

passive tBrms. Further, the squeeze film tests, where rotative speed w.=O deletes

all terms containing wR as a multiplier. The terms which are deleted e_tirely can be

considered as the active terms. These observations indicate the proper location of
the terms.

_ _ S_j If a further check is desired, since it is
fundamental that springs with negative

_- .._ _--. stiffness cannot exist as real passive

__/ C-- _i__ _ impedances any negative stiffness term
/ - _ _ component necessarily represents the active

_ portion of the feedback loop. Since spring

i _°_>_ /_lq,, _ _ \) force is motion times springcoefficient,supplyrestoring

__-_\ in order to the force
against input force the elastic force must

_- be at nearly 90 degrees with respect to

motion, because the motion itself is nearly

90 degrees with respect to input force

(Fig. 11).

As a result, the so called "cross spring"

is actually the very real (but syn-

thetically manufactured by feedback)

Figure l]. - Force diagram for restoring spring force. In review of the
active behavior of such a bearing it is atrotational speed below resonance.
the same time extremely simple with only

one moving part, as well as extremely complex, because this one working part
performs several functions.
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Summarizing these considerations we describe the transfer function of the active
feedback loop in the following form (Fig. 10):

kr-iWRkt sin_ =ktWR(COS_ -i sin _ )=ktWRe-i_

- "_ , + k , kt=k sin _ =_dwhere kr=ktcos_ kr =kr r t r"

The active loop then contains a fraction of the wR dependent coefficient k
(radial stiffness) and full tangential stiffness _oefficient. The last on_ is

entirely the result of oil wedge formation. As it was identified in the previous

section, the radial stiffness contains a constant term and a term varying with the

rotational speed. However, a precise identification was difficult in view of its

relatively small value.

(20)

It is supposed that the terms located in the feedback loop are directly responsible

for the transfer of rotational energy into vibrations. The angle _ represents the

angle between the observed motion and the active force (Fig. 11). This angle is
usually a little less than 90 degrees for 360 ° fluid bearing. For other types of

bearings it is nearer 0 degrees (e.g. for sleeve bearings with stable void islands in

the thick film region, generally referenced to as "180 Degree" or "Half Sommerfeld"

bearings).

In the present study it has been found that the radial spring coefficient has a low

value, for _ _90 ° cos _ is very small - this is reflected in the expression (20).

However, at this time we have not found a means to measure directly the angle 6.

All other terms of the rotor system are located in the "passive" part of the

servomechanism model (Fig. 10). Being functions of the rotational speed, they may

also modify the rotor response in some "active" way, however to a lower degree than
the ones related to stiffnesses.

A rotating shaft in a bearing does (1) have passive impedance, (2) transfers energy

from input torque by dragging lubricant around, (3) moves sidewise of the input

force (as best it can) to provide a restriction of flow to the lubricant to build

a converging wedge for support, and finally (4) synthetically builds a force to

counteract the input force.

Rotor systems, as currently configured, are rarely well stabilized because (1) their

basic algorithims are complex, nonlinear and nonsymmetric, and (2) there has been

lack of recognition and knowledge of this feedback nature of rotor behavior. The

present paper throws some light on these problems, however much more research is

needed to provide answers to all questions related to the rotor/bearing/seal

stability.
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APPENDIX

AI. EIGENVALUE PROBLEM FOR THE EQUATIONS (1) AND (4)

The homogeneous equation (I) with hydrodynamic forces (4) has the following

eiqenvalues:

XI'2'3'4 : _dr± i(dt-JlmR-J2mP ))/(2M+2m) _ (ml+ im2)_ (A1)

where

_j : I('1)J ((dt-JlmR-J2_p) 2 _ dr2 + 4((M+m)kr+mtktmR)) +

2 2
+ (((dt-JlCaR-J2cop) - d r + 4((M+m)kr+mtkta_R)) 2 +

(A2)

_ 4 (dr(dt-Jl_R-J2_p) + 2(mtkr-(M+m)kt_R))_) 2j _/(V_(M+m)), j:l,2.

The condition of stability (negative real parts of the equinvalues (A1) is as
follows:

dr((M+m)kr+mtkt_R)-dr(dt-dl_R-J2_p)(mtkr-(M+m)kt_R)-(mtkr-(M+m)ktWR )2 > O. (A3)

For Ji = J2 = mt = 0 it reduces to
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-(M+m)(ktCoR/dr) 2 + kt_Rdt/dr + k r > 0 ,
(A4)

or after transformation to

-If2) < WRkt/d r < )fll , (A5)

where

fj : +[dt/(2M+2m)+(-l)J((dt/(2M+2m)) 2 +kr/(M+m)).!, j=1,2 (A6)

are natural frequencies of the system at the limit of stability, i.e., when

instead of inequality (A4) we have the equation. As we can easily check fl and f2
are also the roots of the Direct Impedance (9).

For kt > 0 the quantity

= fl - WRkt/d r > 0

gives a margin of safety for the stability. As the value WRkt/d r is the root

of the Quadrature Impedance (10), the stability of the perturbed system is

assured if the zero of the Quadrature Impedance appears at a lower perturbation

speed w than the zero of the Direct Impedance.
P

All. FOURIER TRANSFORMATION OF THE EQUATIONS (1) and (4).

(A7)

The mathematical model of the system can be presented applying the Fourier

transformation and the control theory formalism. From (1) and (4) we get
then

z (iWp) [D (iWp) + iQ (iWp)] = L [ 0 (iWp)]

where z (iWp) is the Fourier transformation of the variable z(t)

the Fourier operator, D(iwp), Q(iwp) are given by (9),(10),

the Fourier transformation of the input forces 0 = Uw2 e iWpt
P

+iQ (iWp)] is the transfer function of the system.

A

C

d ,dt
Dr

g

11,12

(2), iw is
P

L [ 0 (iWp)] is

iP1. [D(iwp) +

NOTATION

Amplitude of the response _4

Bearing radial clearance (0.015"=3.8 10 m)

Radial and tangential bearing damping coefficients

Direct Impedance

Acceleration of gravity

Moments of inertia of the main (1) and perturbing (2) shafts

about x or y axis (24.8 gm2, 6.7gm2; I1=50 gm2 for the case of
additional mass)

(A8)
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15
ml,m 2
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P

Q
r
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IlSll

"SM"

Y
A

q
I

W

Moments of inertia of the main and perturbing (2) shafts about

the axis of rotation (O.0650gm2,0.O3gm2; I1z=O.O652gm2 for
case of additional mass)

Radial and tangential bearing stiffness coefficients

Equivalent stiffness coefficient of the additional springs

(33100 N/m=189 Ib/inch)

Length of the perturbing shaft (9.5"=0.241m)

Distance from the center of bearing to the probe (0.625"=0.0159m)
Distance from the bearing center to the pulling force section (2"=0.0508m)

Length of the main shaft (11.75"=0.298m)

Distance to the position of the perturbing force (7.7"=0.195m)

Masses of the main and perturbing shafts with accessories (280g, 150g)

Perturbing unbalance mass (4g)

Radial and tangential bearing "fluid inertia" coefficients

Original system

Pulling force

Quadrature Impedance
Radius of the controlled unbalance (33/32"=0.0262m)

Radius of the shaft journal (1.00"=0.0254m)

System with additional springs
System with additional springs and mass

Phase of the response - Attitude angle

Stability margin

Dynamic viscosity of oil (poise)

Oil rotation speed ratio
Perturbation speed (perturbing shaft)

Rotation speed (main shaft)
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